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S.D. &G7%ZIN and K.I. BABENKO 

The problem of the bending and free vibrations of a clampedandedge-supportedplate 
is considered, The proposed algorithm is the algorithm described in /l/, made 
specific for the case of the biharmonic equation, It does not have saturation /2/, 
i.e., its accuracy will be the higher, the smoother the solution. The program is 
constructed in such a manner that if the plate boundary is sufficiently smooth and 
given parametxically, then several of the first eigenvalues can be calculated and 
the bending problem can be solved. An illustration is presented of the eigenfrequ- 
ency computation for an edge-supported plate whose boundary (an epitrochoid) has a 
curvature of the order of103attwelve points (the curvatures enter explicitly in 
the appropriate boundary condition) _ The fisst eigenfrequenciesarecafculated with 
7-8 places after the decimal point. The solution is obtained becauseoftheaccur- 
ate method of discretization and the study af the structureoftheappropriate finite- 
dimensional problem. This would permit execution of computstionswitha largenumber 
of points (up to 12.30). A comparison is given with the results of computations of 
other authors for a circle and an ellipse /3-5/. 

1, Algorithms are considered for the numerical solution of the boundary value problems 
fl.l)-(l.3fr and (l-l), (1.2) and (1.4): 

Here G is a domain in the complex z-plane with a sufficiently smooth boundary %, n is 
the unit vector of the external normal to $G, @Is denot@s differentiation with respect to the 
arclength (the length is measured counter-clockwise), i/p is the curvature of dG I and v is a 
constant (the Poisson's ratio). The function F(z) is either given, or has the form F (z) = 

(Q(z) + hP (z))u(z), where Q and Pare certain functions, and we have an eigenvalue problem for 
the biharmonie equation in this case. In particular, for Q= G and P 3 1 we obtain a plate 
free vibrations problem, where the natural frequency w is related to the spectral parameter 
h by the relationship t/jc= a mB,rl is the density , and I) is the cylindrical stiffness. 

The boundary conditions (1.2) and (1.3) signify that the plate is clamped along the edge,while 
the boundary conditions (1.2) and (1.4) signify edge-support. 

Let z = (p(c) be a function giving the conforms1 mapping of the unit radius Circle into 

the domain G. Then in place of (l.l)- (1.4), we obtain the following relations in the plane 
5: 

A (i 9' (5) 1") Au = I $ f%f f ’ f 63, 5 = r@, J. < f Il.51 

11.61 

(1.71 

(1.8) 

The condition (1.6) is taken into account in the boundary condition <l-8), i.e., we set 
a'ufass = a. 

A priori information about the solution, its analyticity, should be used for successful 
discretisatian of the boundary value problems (1.5)- (1.8). To this end we invert the differ- 
ential operator in the left side of relation (1.5) and we apply the interpolation fom~ula (2) 
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for a function of two variables in a circle from /l/. This procedure is presented in detail 
below. 

2. Let us introduce sane notation. Let Z1(c) be the fundamental functions of the above- 
mentioned interpolation, then for any continuous function j(c) given in a unit circle, we have 
the following relationship 

(2.1) 

where ji =f(cj) is the value of the function f at the j-th interpolation node, RN+ is the 
error in the interpolation formula. The form of the function Z,(c) is described in detail in 
/l/. We just note that the interpolation nodes 5, lie on mcircles at equal angles and there 
are N 3 2n + 1 nodes on each circle. The radius of the v-th circle r, is a positive zero of 
the Chebyshev polynomial T,, of degree 2m. Therefore, there areN, =mNnodes in the circle. 
We use the notation 

(2.2) 

where K(& f) is the Green's function of the Dirichlet problem for the Laplace equation in a 
circle. If 5 runs through the interpolation nodes 6j, j = 1, . . ., N,, we then obtain the matrix 
H of dimension N, X N** H,J = H, (Et). Therefore, H is a matrix of the discrete Dirichlet 
problem for the Laplace equation in a circle /l/. It turns out that the matrix Hhas the fol- 
lowing modular structure: 

H = 11 &II; i, j = 1, 2, . . ., m (2.3) 

where the matrices h,j are symmetric circulants /6/ of dimension N x N. The properties of 
such matrices are studied in /I/. 

3. We return to the first Laplace operator in (1.5) and we obtain 

(3.1) 

where K,,(<,e) is the Poisson kernel, and r (e? is an unknown function. Turning again to the 
Laplace operator in (3.1), by taking account of (1.6) we obtain the relationship 

u (5) = s K GE) 8 (8 d& (3.2) 
IEl‘a 

We apply the interpolation formula (2.1) to the functions S (f) and I cp’ (5) I V @It and we 
use trigonometric interpolation for v 

an 

v(eie)=~-DD,(e-0j)vj+r.(8;v), e,=.$ 
,=0 (3.3) 

(Dn is the Dirichlet kernel, and r,, is the error in the interpolation). We then obtain 

Here zj is the value of the function Icp’(E) I2 at the j-th interpolation node, and 6, 
is the error. The last integral is evaluated analytically. 

The unknown quantities u,,, . . .,Q,, enter into the relationship (3.4). We use the second 
boundary condition (1.7) or (1.8) for their determination. It is convenient to consider a 
rather more general problem. We 1etMdenote the differential operator in the left side of 
the boundary condition by considering the first boundary condition to have the form of (1.6). 
We apply the differential operator Mto (3.4), we set 5 =eie in the relationship obtained by 
considering that tl runs throughtheinterpclation nodes 8, (see (3.3)). Then we obtainasystem 
of linear equations with matrices A and right side R to determine v = (v,,... VJ where 
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(3.5) 

Ht,p=M(fb(5))l_ie c-r P 

and 6, is the error. Let C = A-‘, then v = CR. We substitute this expression into (3.4) 
and let 5 run through the interpolation nodes within the circle in the relationship obtained. 
We consequently have the summary relationship 

u = (B" - BEB)f + 6 (3.6) 

Here u = (U &h . . ., ~4 (CN.))' is the vector of values of the function u(c) at the nodes, f 
is the corresponding vector of the values of the right side of the biharmonic equation, B = 
HZ is the matrix of the discrete Dirichlet problem for the Laplace equation in the domain G 
under consideration (6 is the error of discretization) 

Discarding the error 6 in (3.6), we obtain an approximate finite-dimensional problem. 
Therefore, the solution of the plate bending problem reduces to multiplying the matrix D = 
Ba - BEB by a vector, and the eigenvalue (free vibrations) problem corresponds to the ap- 
proximate finite-dimensional problem 

u = (Be - BEB) (Q + hP) 

Q = diag (q (6A . . ., q (cN.))t P = diag (P (51)t . . ., P (Sd) 

where Q,P are diagonal matrices for which values of the appropriate functions q and p at 
the interpolation nodes are on the diagonals. For the free vibrations problem QEO,PEI, 
i.e., it reduces to evaluation of the eigenvalues of the matrix D. 

We note that the form of the second boundary value problem is taken into account by the 
configuration of the matrix E, where if the second boundary condition Au (~0 = 0, then ES 0, 
while for the conditions (1.7), (1.8), etc. the array E should be constructed according to 
(3.7). We recall that the first boundary condition is fixed and is applied in the form (1.6). 

In order to see the stability of the algorithm described for the evaluation of the matrix 
D, the question of the specificity number of the matrix A should be investigated. It can 

be shown that the procedure to determine the function ~(0) on the boundary of the circle re- 
duces to a problem of solving an integral equation of the first kind where the difficulty of 
performing the solution is determined by the rate at which its eigenvalues tend to zero. The 
inequality 

is valid for the eigenvalues & of the corresponding integral equation under the boundary con- 
dition (1.7). 

Therefore, in this case the specificity number of the matrixA of dimension NXNis 
csnd A x N and depends onthe domain G under consideration. 

Thus, a loss of O(N) symbols occurs upon inversion of the matrix A (see (3.5)) for the 
case of boundary condition (1.7). In practical computations the value of condA would never 
exceed a quantity of the order of 10 p for both boundary conditions (the maximal value of N 
for which the computations would be performed would be 41). 

If the initial domain is a circle, then the structure of the matrix Dis the same as the 
structure of the matrix H defined by (2.3). 

In fact, we first consider the boundary condition (1.7). In this case the array H&, is 
represented in the form of the modular matrix H1 while the array ~~"(5~) can be represented in 
the form of the modular matrix Ho 

fl1 = &, . . ..d,,,), Ho = (b,. . . ., M’ (3.8) 

where dv and by are symmetric circulants of dimension N XN. Takingthisnotationintoaccount, 
we obtain that 

A = HIZHa = dlZlb, + . . . +d,,,Z,b, (3.9) 



Here 2 = diag (Z,, . . ., z,) is a block-diagonal matrix, where the matrices 2, are diagonaland 
contain the values Ie'(S)l' on the v-th circle on the diagonals. Furthermore, we have 

E = H.,CH,Z = (b,, . . ., bm)‘C (d~z,, . . ., dmzm) (3.10) 
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The array Ht,P can be represented in the form of a block matrix 

H, = (drO +*,, . . .* dmo+tpd,,,),~= diag(qa,. . .,rPlm) 

for the boundary condition (1.8). 
Here dy are the same matrices as in the formula (3.8) while 4p are certain other sym- 

metric circulants of dimension NxN. The formulas for the arrays A and B are obtained by 
replacing the matrixEl,by E, in (3.9) and (3 .lO). For a circle Z=I and gj~v. Hence, the 
matrices A and C are symmetric circulants of dimension NxN. Mow the assertion formulated 
above follows from the properties of symmetric circulants /6/. 

Therefore, for a circle the matrix D possesses properties formulated in /7/. It isknown 
that in a circle the corresponding eigenvalue problem for the biharmonic equation is reduced 
by separation of variables to an eigenvalue problem for ordinary differential equations. The 
finite-dimentional problem inherit such property. The form of the eigenfunctionandthemulti- 
plicity property of part of the eigenvalues is also inherited. 

We note that the arrays H and H, which are required for evaluation of the matrix D are 
evaluated once for all the domains and boundary conditions of the kind under consideration. 
Moreover, the array Hcontains m'(n + 1) distinct elements and the array,Hojust,m(n + l).For 
instance,if104points (eightthirteen-point circles) are takenin acircle, thenthearray Hcontains 

448 distinctelementsand H, has 56. Thearrays HI and HP alsohaveananalogous structure. This 
permitsexecutionofcomputationswithalarge number of points. 

The maximal number of points with which the computations were performedis 1230(30circles 
of 41 points). In practice, eigenvalues of large dimension matrices are evaluated by the 
simple iteration method in conjunction with the method of elimination /8/. The approximate 
expression of the eigenfunction obtained at the least number of points was used as the initial 
approximation. Only multiplication programs for the matrices D and D' (i.e., the transpose 
matrix) by a vector are required to realize this method, where the matrices D and D’ need not 
be evaluated explicitly. 

The simple matrix configuration described above for the finite-dimensional problem per- 
mits creation of a standard program to evaluate the eigenvalues of the biharmonic operatorand 
to solve the corresponding boundary value problem. 

4. Let us examine certain examples of numerical computations. We initially considerthe 
problem of free vibrations in a circle. The maximum numberofpoints with which the computa- 
tions were performed is 820 (20 circles of 41 points). Evaluation of the eigenvalues of the 
corresponding matrix D of dimension 820 X 820 reduces to evaluation of 21 matrices of dimen- 
sion 20 X 20 /7/. For the first five single eigenvalues we obtain for the clamping boundary 
condition 104.3631056 (104.344/3/),1581.744 (1581.306/j/), 7939.549,25022.25,61012,andforthe 
free support boundary condition (v=O.%)we obtain 23.62085804 (24.744 /3/), 879.843510932 
(885.481 /3/j, 5491.02409476, 19117.1544172); 49357.5252428. As a check, calculation were 
performed at 100 points by a one-dimensional method. Only the symbols that agree are present- 
ed above (except for the last digit). We present still another value of the seventh eigen- 
value in magnitude for the free support case (double) 3224.568989 (3259.626 /3/). 

As the next example, we consider the problem of free vibrations of a freely supported 
plate whose boundary is obtained from a circle by the conformal mapping I= c(i+ 51%//14). The 
boundary of this domain (an epitrochoid) has a curvature of order iOa (-2170) at 12 points. 
For the first five eigenvalues for v=O.25, we obtain at the 1230 = 30 X 41 
10.6434390885, 95.7918067+'03; 272.3244532'59; 471.2710702'79; 587.1410694'72; 

points 
Moreover, com- 

putations were performed at 410 = 10 X 41 and 820 = 20 X 41 points, whose results agree with 
the results presented above with an error in not more than the ninth unit of thelastsymbol, 
separated by the ordinary print from the subsequent cursive print. 

This last illustration is the evaluation of the fundamental frequency for a clamped 
elliptic plate. The conformal mapping of the circle on the ellipse was executed numerically. 
For r& with a~ i,b=0.5 , the value 27.2 (28.5148 /4/; 27.5 /9/) is obtained at 104 = 8 X 13 
points, while for (I= i, b=VJ the value 56.4 (60.3179 /4/, 56.9 /9/) is obtained at 410 = 
10 x 41 points. 
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